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CHAPTER 22

Overview

Thus far we have assumed that each study contributes one (and only one) effect size to

a meta-analysis. In this section we consider cases where studies contribute more than

one effect size to the meta-analysis. These usually fall into one of the following types.

Multiple independent subgroups within a study

Sometimes a single study will report data for several cohorts of participants. For

example, if researchers anticipate that the treatment effect (e.g., drug versus

placebo) could vary by age, they might report the treatment effect separately for

children and for adults. Similarly, if researchers anticipate that the treatment effect

could vary by disease stage they might report the effect separately for patients

enrolled with early-stage disease and for those enrolled with late-stage disease.

The defining feature here is that the subgroups are independent of each other, so

that each provides unique information. For this reason, we can treat each subgroup

as though it were a separate study, which is sometimes the preferred method.

However, there are sometimes other options to consider, and we will be discussing

these as well.

Multiple outcomes or time-points within a study

In some cases researchers will report data on several related, but distinct outcomes.

A study that looked at the impact of tutoring might report data on math scores and

also on reading scores. A study that looked at the association between diet and

cardiovascular disease might report data on stroke and also on myocardial infarc-

tion. Similarly, a study that followed subjects over a period of time may report data

using the same scale but at a series of distinct time-points. For example, studies that

looked at the impact of an intervention to address a phobia might collect data at one

month, six months, and twelve months.

The defining feature here is that the same participants provide data for the

different outcomes (or time-points). We cannot treat the different outcomes as

though they were independent as this would lead to incorrect estimates of the

variance for the summary effect. We will show how to correct the variance to

take account of the relationship among the outcomes.
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More than one comparison group within a study

Sometimes, a study will include several treatment groups and a single control group.

For example, one effect size may be defined as the difference between the placebo

group and drug A, while another is defined as the difference between the same

placebo group and drug B.

The defining feature here is similar to multiple outcomes, in that some partici-

pants (those in the control group) contribute information to more than one effect

size. The methods proposed for dealing with this problem are similar to those

proposed for multiple outcomes. They also include some options that are unique

to the case of multiple comparisons.

How this Part is organized

The next three chapters address each of these cases in sequence. Within each

chapter we first show how to combine data to yield a summary effect, and then

show how to look at differences in effects.

The worked examples in these chapters use the fixed-effect model. We adopt this

approach because it involves fewer steps and thus allows us to focus on the issue at

hand, which is how to compute an effect size and variance. Once we have these

effect sizes we can use them for a fixed-effect or a random-effects analysis, and the

latter is generally more appropriate.

In the worked examples we deliberately use a generic effect size rather than

specifying a particular effect size such as a standardized mean difference or a log

odds ratio. The methods discussed here can be applied to any effect size, including

those based on continuous, binary, correlational, or other kinds of data. As always,

computations for risk ratios or odds ratios would be performed using log values, and

computations for correlations would be performed using the Fisher’s z transformed

values.
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CHAPTER 23

Independent Subgroups within a Study

Introduction
Combining across subgroups
Comparing subgroups

INTRODUCTION

The first case of a complex data structure is the case where studies report data from

two or more independent subgroups.

Suppose we have five studies that assessed the impact of a treatment on a specific

type of cancer. All studies followed the same design, with patients randomly

assigned to either standard or aggressive treatment for two months. In each study,

the results were reported separately for patients enrolled with stage-1 cancer and for

those enrolled with stage-2 cancer. The stage-1 and stage-2 patients represent two

independent subgroups since each patient is included in one group or the other, but

not both.

If our goal was to compute the summary treatment effect for all stage-1

patients and, separately, for all stage-2 patients, then we would perform two

separate analyses. In this case we would treat each subgroup as a separate

study, and include the stage-1 studies in one analysis and the stage-2 studies in

the other.

This chapter addresses the case where we want to use data from two or more

subgroups in the same analysis. Specifically,

� We want to compute a summary effect for the impact of the intervention for

stage-1 and stage-2 patients combined.

� Or, we want to compare the effect size for stage-1 patients versus stage-2

patients.
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COMBINING ACROSS SUBGROUPS

The defining feature of independent subgroups is that each subgroup contributes

independent information to the analysis. If the sample size within each subgroup is

100, then the effective sample size across two subgroups is 200, and this will be

reflected in the precision of the summary effect. However, within this framework

we have several options for computing the summary effect.

We shall pursue the example of five studies that report data separately for patients

enrolled with stage-1 or stage-2 cancer. The effect size and variance for each

subgroup are shown in Table 23.1 and are labeled simply ES and Variance to

emphasize the point that these procedures can be used with any effect size. If the

outcome was continuous (means and standard deviations), the effect size might be a

standardized mean difference. If the outcome was binary (for example, whether or

not the cancer had metastasized), the effect size might be the log risk ratio.

Using subgroup as unit of analysis (option 1a)

One option is simply to treat each subgroup as a separate study. This is shown in

Table 23.2, where each subgroup appears on its own row and values are summed

across the ten rows.

Then, using formulas (11.3) to (11.5),

M 5
76:666

413:333
5 0:1855;

with variance

VM 5
1

413:333
5 0:0024

Table 23.1 Independent subgroups – five fictional studies.

Study Subgroup ES Variance

Study 1
Stage 1 0.300 0.050
Stage 2 0.100 0.050

Study 2
Stage 1 0.200 0.020
Stage 2 0.100 0.020

Study 3
Stage 1 0.400 0.050
Stage 2 0.200 0.050

Study 4
Stage 1 0.200 0.010
Stage 2 0.100 0.010

Study 5
Stage 1 0.400 0.060
Stage 2 0.300 0.060
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and standard error

SEM 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:0024
p

5 0:0492:

Using study as unit of analysis (option 1b)

A second option is to compute a composite score for each study and use this in the

analysis, as in Figure 23.1. The unit of analysis is then the study rather than the

subgroup.

Computing a combined effect across subgroups within a study
The mean and variance of the composite within a study are computed by performing

a fixed-effect meta-analysis on the subgroups for that study. For study 1, this is

shown in Figure 23.1 and in Table 23.3.

We apply formulas (11.3) and (11.4) to yield a mean effect

M 5
8:0000

40:0000
5 0:2000

Table 23.2 Independent subgroups – summary effect.

Study Subgroup ES Variance WT ES*WT

Study 1
Stage 1 0.30 0.05 20.000 6.000
Stage 2 0.10 0.05 20.000 2.000

Study 2
Stage 1 0.20 0.02 50.000 10.000
Stage 2 0.10 0.02 50.000 5.000

Study 3
Stage 1 0.40 0.05 20.000 8.000
Stage 2 0.20 0.05 20.000 4.000

Study 4
Stage 1 0.20 0.01 100.000 20.000
Stage 2 0.10 0.01 100.000 10.000

Study 5
Stage 1 0.40 0.06 16.667 6.667
Stage 2 0.30 0.06 16.667 5.000

Sum 413.333 76.667

Study Subgroup Effect size Variance Mean Variance

Stage-1 0.30 0.05
Study 1

Stage-2 0.10 0.05
0.200 0.025

Figure 23.1 Creating a synthetic variable from independent subgroups.
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with variance

VM 5
1

40:0000
5 0:0250:

Note that the variance for the study (0.025) is one-half as large as the variance for

either subgroup (0.050) since it is based on twice as much information.

This procedure is used to form a composite effect size and variance for each

study, as shown in Table 23.4. Then, we perform a meta-analysis working solely

with these study-level effect sizes and variances.

At this point we can proceed to the meta-analysis using these five (synthetic)

scores. To compute a summary effect and other statistics using the fixed-effect

model, we apply the formulas starting with (11.3). Using values from the line

labeled Sum in Table 23.4,

M 5
76:667

413:333
5 0:1855

with variance

VM 5
1

413:333
5 0:0024

Table 23.3 Independent subgroups – synthetic effect for study 1.

Subgroup Effect Variance Weight Computed
Y VY W WY

Stage 1 0.30 0.05 20.000 6.000
Stage 2 0.10 0.05 20.000 2.000

Sum 40.000 8.000

Table 23.4 Independent subgroups – summary effect across studies.

Study Subgroup ES Variance ES Variance WT ES*WT

Study 1
Stage 1 0.300 0.050

0.200 0.025 40.000 8.000
Stage 2 0.100 0.050

Study 2
Stage 1 0.200 0.020

0.150 0.010 100.000 15.000
Stage 2 0.100 0.020

Study 3
Stage 1 0.400 0.050

0.300 0.025 40.000 12.000Stage 2 0.200 0.050

Study 4
Stage 1 0.200 0.010

0.150 0.005 200.000 30.000Stage 2 0.100 0.010

Study 5
Stage 1 0.400 0.060

0.350 0.030 33.333 11.667
Stage 2 0.300 0.060

Sum 413.333 76.667
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and standard error

SEM 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:0024
p

5 0:0492:

Note that the summary effect and variance computed using study as the unit of

analysis are identical to those computed using subgroup as the unit of analysis. This

will always be the case when we use a fixed effect analysis to combine effects at

both steps in the analysis (within studies and across studies).

However, the two methods will yield different results if we use a random

effects analysis to combine effects across studies. This follows from the fact

that T 2 (which is used to compute weights) may be different if based on variation

in effects from study to study than if based on variation in effects from subgroup

to subgroup. Therefore, the decision to use subgroup or study as the unit of

analysis should be based on the context for computing T2. Consider the following

two cases.

� Case 1: Five researchers studied the impact of an intervention. Each researcher

selected five schools at random, and each school is reported as an independent

subgroup within the study. In this situation, between-school variation applies just

as much within studies as across studies. We would therefore use subgroup as the

unit of analysis (option 1a).

� Case 2: Five researchers have published papers on the impact of an intervention.

Each researcher worked in a single school, and the subgroups are grade 1, grade 2,

and so on. We expect the effects to be relatively consistent within a school, but to

vary substantially from one school to the next. To allow for this between-school

variation we should use a random-effects model only across studies. To properly

estimate this component of uncertainty we would use study as the unit of analysis

(option 1b).

Recreating the summary data for the full study (option 2)

Options 1a and 1b differ in the unit of analysis, but they have in common that

the effect size is computed within subgroups. Another option (option 2) is to

use the summary data from the subgroups to recreate the data for the study as

a whole, and then use this summary data to compute the effect size and

variance.

When the subgroup data are reported as 2� 2 tables we can simply collapse cells

to recreate the data for the full sample. That is, we sum cell A over all subgroups to

yield an overall cell A, and repeat the process for cells B, C, and D.

When the subgroup data are reported as means, standard deviations, and sample

size for each treatment group the combined sample size is summed across subgroup.

For example, for treatment group 1,

n1 5 n11 þ n12; ð23:1Þ
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the combined mean is computed as the weighted mean (by sample size) across groups,

X1 5
n11 X11 þ n12 X12

n11 þ n12

; ð23:2Þ

and the combined standard deviation is computed as

S1 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn11 � 1Þ S2

11 þ ðn12 � 1Þ S2
12 þ

n11n12

n11 þ n12

ðX11 � X12 Þ2

n11 þ n12 � 1

vuut ; ð23:3Þ

whereX11, X12 are the means in subgroups 1 and 2 of treatment group 1; S11, S12 the

standard deviations, and n11, n12 the sample sizes; of subgroups 1 and 2.

When the subgroup data are reported as correlations, analogous formulas exist to

recreate the correlation for the full study, but these are beyond the scope of this book.

Option 2 is sometimes used when some studies report summary data for all

subjects combined, while others break down the data by subgroups. If the researcher

believes that the subgroup classifications are unimportant, and wants to have a

uniform approach for all studies (to compute an effect size from a single set of

summary data) then this option will prove useful.

However, it is important to understand that this is a fundamentally different

approach than other options. To return to the example introduced at the start of

this chapter, under options 1a and 1b the effect size was computed within subgroups,

which means that the effect size is the impact of intervention controlling for cancer

stage (even if we then merge the effect sizes to yield an overall effect). By contrast,

under option 2 we merge the summary data and then compute an effect size.

Therefore the effect is ‘the impact of intervention ignoring cancer stage’.

When the studies are randomized trials, the proportion of participants assigned to

each treatment is typically constant from one subgroup to the next. In this case there is

not likely to be a confounder between treatment and subgroup, and so either approach

would be valid. By contrast, in observational studies the proportion of exposed

subjects may vary from one subgroup to the next, which would yield confounding

between exposure and subgroup. In this case option 2 should not be used. (This is the

same issue discussed in Chapter 33, under the heading of Simpson’s paradox.)

COMPARING SUBGROUPS

When our goal is to compare the effect size in different subgroups (rather than

combine them) we have two options, as follows.

Using subgroup as unit of analysis

One option is simply to treat each subgroup as a separate study, where each study

is classified (in this example) as stage 1 or stage 2. We then compute a summary
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effect for all the stage 1 effects, another for all the stage 2 effects, and then compare

the two using a Z-test or analysis of variance as discussed in Chapter 19.

A second option is to compute the effect size within subgroups for each study, and

then to compute the difference in effects within each study. In this case each study

will contribute one effect to the analysis, where the effect is the difference between

subgroups.

The first option is a more general approach. It allows us to work with studies that

report data for any subgroup or combination of subgroups (one study has subgroups

A and B, another B and C, and so on), and then to use all relevant subgroups to

compute the summary effect.

The second option can only be used if all studies report data on the same two

subgroups, which is relatively rare. When this option can be used, however, it will

usually yield a more precise estimate of the difference in effects in random effects

analyses, and is also desirable because differences in effects are not confounded by

possible differences between studies.

SUMMARY POINTS

� When we have independent subgroups within a study, each subgroup con-

tributes independent information. Therefore, if the sample size within each

subgroup is 100, then the effective sample size across five subgroups is 500.

In this sense, independent subgroups are no different than independent

studies.

� To compute a summary effect we typically compute the effect within sub-

groups and then either use these effects as the unit of analysis, or merge effects

within each study and use study as the unit of analysis. A second option is to

combine the summary data from all subgroups to recreate the original study-

level data, and then compute an effect size from this data. The second

approach should be used only in limited circumstances.

� To compare effects across subgroups we typically use subgroup as the unit of

analysis. In some cases we may also be able to compute the difference

between subgroups in each study, and use study as the unit of analysis.
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CHAPTER 24

Multiple Outcomes or Time-Points
within a Study

Introduction
Combining across outcomes or time-points
Comparing outcomes or time-points within a study

INTRODUCTION

The second case of a complex data structure is the case where a study reports data on

more than one outcome, or more than one time-point, where the different outcomes

(or time-points) are based on the same participants.

For example, suppose that five studies assessed the impact of tutoring on student

performance. All studies followed the same design, with students randomly

assigned to either of two groups (tutoring or control) for a semester, after which

they were tested for proficiency in reading and math. The effect was reported

separately for the reading and the math scores, but within each study both outcomes

were based on the same students.

Or, consider the same situation with the following difference. This time, assume

that each study tests only for reading but does so at two time-points (immediately

after the intervention and again six months later). The effect was reported separately

for each time-point but both measures were based on the same students.

For our purposes the two situations (multiple outcomes for the same subjects or

multiple time-points for the same subjects) are identical, and we shall treat them as

such in this discussion. We shall use the term outcomes throughout this chapter, but

the reader can substitute time-points in every instance.

If our goal was to compute a summary effect for the impact of the intervention on

reading, and separately for the impact of the intervention on math scores, we would

simply perform two separate meta-analyses, one using the data for reading and the

other using the data for math. The issues we address in this chapter are how to
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proceed when we want to incorporate both outcomes in the same analysis.

Specifically,

� We want to compute a summary effect for the intervention on Basic skills, which

combines the data from reading and math.

� Or, we want to investigate the difference in effect size for reading versus math.

In either case, the issue we need to address is that the data for reading and math are

not independent of each other and therefore the errors are correlated.

COMBINING ACROSS OUTCOMES OR TIME-POINTS

The data for the five fictional studies are shown in Table 24.1. In study 1, for

example, the effect size for reading was 0.30 with a variance of 0.05, and the effect

size for math was 0.10 with a variance of 0.05.

While it might seem that we could treat each line of data as a separate study and

perform a meta-analysis with ten studies, this is problematic for two reasons. One

problem is that in computing the summary effect across studies this approach will

assign more weight to studies with two outcomes than to studies with one outcome.

(While this problem does not exist in our set of studies, it would be a problem if the

number of outcomes varied from study to study.)

The second, and more fundamental problem, is that this approach leads to an

improper estimate of the precision of the summary effect. This is because it treats

the separate outcomes as providing independent information, when in fact the

math and reading scores come from the same set of students and therefore are not

independent of each other. If the outcomes are positively correlated (which is

almost always the case with effects that we would want to combine), this

approach underestimates the error (and overestimates the precision) of the sum-

mary effect.

Table 24.1 Multiple outcomes – five fictional studies.

Study Outcome ES Variance

Study 1
Reading 0.300 0.050
Math 0.100 0.050

Study 2
Reading 0.200 0.020
Math 0.100 0.020

Study 3
Reading 0.400 0.050
Math 0.200 0.050

Study 4
Reading 0.200 0.010
Math 0.100 0.010

Study 5
Reading 0.400 0.060
Math 0.300 0.060
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Note. If the correlation between outcomes is negative, this approach will over-

estimate the error (and underestimate the precision) of the summary effect. The

solutions presented below will work for this case as well, but in the discussion we

assume that we are dealing with a positive correlation.

To address these problems, rather than treating each outcome as a separate unit

in the analysis, we’ll compute the mean of the outcomes for each study, and use

this synthetic score as the unit of analysis. In Table 24.2 we show this schema-

tically for study 1.

We start with summary data for two outcomes (math and reading), and compute

an effect size and variance for each. If the data are continuous (means and standard

deviations on the exam) the effect size might be Hedges’ g. If the data are binary

(number of students passing the course) the effect size might be a log risk ratio. And

so on. Then, we compute a synthetic effect size for Basic skills which incorporates

both the math and reading effects. The method used to compute this effect size and

its variance is explained below.

Since every study will be represented by one score in the meta-analysis

regardless of the number of outcomes included in the mean, this approach solves

the problem of more weight being assigned to studies with more outcomes. This

approach also allows us to address the problem of non-independent information,

since the formula for the variance of the synthetic variable will take into account

the correlation among the outcomes.

Computing a combined effect across outcomes
Our notation will be to use Y1, Y2 etc. for effect sizes from different outcomes or

time points within a study, and Yj to refer to the jth of these. Strictly, we should use

Yij, for the jth outcome (or time-point) in the ith study. However, we drop the i

subscript for convenience. The effect size for Basic skills is computed as the mean

of the reading and math scores,

Y ¼ 1

2
ðY1 þ Y2Þ: ð24:1Þ

This is what we would use as the effect estimate from this study in a meta-analysis.

Using formulas described in Box 24.1, the variance of this mean is

VY ¼
1

4
ðVY1
þ VY2

þ 2r
ffiffiffiffiffiffiffi
VY1

p ffiffiffiffiffiffiffi
VY2

p
Þ ð24:2Þ

Table 24.2 Creating a synthetic variable as the mean of two outcomes.

Study Outcome Effect size Variance Mean Variance

Study 1
Math 0.30 0.05

0.20 ?
Reading 0.10 0.05
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BOX 24.1 COMPUTING THE VARIANCE OF A COMPOSITE OR A DIFFERENCE

1. The variance of the sum of two correlated variables

If we know that the variance of Y1 is V1 and the variance of Y2 is V2, then

varðY1 þ Y2Þ ¼V1 þ V2 þ 2r
ffiffiffiffiffi
V1

p ffiffiffiffiffi
V2

p
;

where r is the correlation coefficient that describes the extent to which Y1 and Y2

co-vary. If Y1 and Y2 are inextricably linked (so that a change in one determines

completely the change in the other), then r 51, and the variance of the sum is

roughly twice the sum of the variances. At the other extreme, if Y1 and Y2 are

unrelated, then r 5 0 and the variance is just the sum of the individual variances.

This is because when the variables are unrelated, knowing both gives us twice as

much information, and so the variance is halved compared with the earlier case.

2. The impact of a scaling factor on the variance

If we know the variance of X, then the variance of a scalar (say c) multiplied by X

is given by

varðcXÞ ¼ c
2 � varðXÞ:

3. The variance of the mean of two correlated variables

Combining 1 with 2, we can see that the variance of the mean of Y1 and Y2 is

var
1

2
ðY1 þ Y2Þ

� �
¼ 1

2

� �
2

varðY1 þ Y2Þ ¼
1

4
V1 þ V2 þ 2r

ffiffiffiffiffi
V1

p ffiffiffiffiffi
V2

p� �
:

4. The variance of the sum of several correlated variables

If we know Yi has variance Vi for several variables i = 1, . . . , m, then the formula

in 1 extends as follows:

var
Xm
i¼1

Yi

 !
¼
Xm
i¼1

Vi

1

þ
X
i 6¼j

rij

ffiffiffiffiffi
Vi

p ffiffiffiffiffi
Vj

p� �

where rij is the correlation between Yi and Yj.

5. The variance of the mean of several correlated variables

Combining 4 with 2, we can see that the variance of the mean of several

variables is

var
1

m

Xm

i¼1

Yi

 !
¼ 1

m

� �
2

var
Xm

i¼1

Yi

2

 !
¼ 1

m

� �
2 Xm

i¼1

Vi

1

þ
X
i6¼j

rij

ffiffiffiffiffi
Vi

p ffiffiffiffiffi
Vj

p� � !
:

6. The variance of the difference between two correlated variables

If we know that the variance of Y1 is V1 and the variance of Y2 is V2, then

varðY1 � Y2Þ ¼V1 þ V2 � 2r
ffiffiffiffiffi
V1

p ffiffiffiffiffi
V2

p
;
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BOX 24.1 CONTINUED

where r is the correlation coefficient that describes the extent to which Y1 and Y2

co-vary. If Y1 and Y2 are inextricably linked (so that a change in one determines

completely the change in the other), then r 5 1, and the variance of the difference

is close to zero. At the other extreme, if Y1 and Y2 are unrelated, then r 5 0 and the

variance is the sum of the individual variances. If the correlation is r 5 0.5 then the

variance is approximately the average of the two variances.

where r is the correlation between the two outcomes. If both variances VY1
and VY2

are equal (say to V), then (24.2) simplifies to

VY ¼
1

2
Vð1þ rÞ: ð24:3Þ

In the running example, in study 1 the effect sizes for math and reading are 0.30 and

0.10, the variance for each is 0.02. Suppose we know that the correlation between

them is 0.50. The composite score for Basic skills (Y) is computed as

Y ¼ 1

2
ð0:30þ 0:10Þ ¼ 0:2000;

with variance (based on (24.2))

VY ¼
1

4
ð0:05þ 0:05þ 2� 0:50�

ffiffiffiffiffiffiffiffiffi
0:05
p

�
ffiffiffiffiffiffiffiffiffi
0:05
p

Þ ¼ 0:0375;

or, equivalently (using (24.3)),

VY ¼
1

2
� 0:05� ð1þ 0:50Þ ¼ 0:0375:

Using this formula we can see that if the correlation between outcomes was zero, the

variance of the composite would be 0.025 (which is half as large as either outcome

alone) because the second outcome provides entirely independent information. If

the correlation was 1.0 the variance of the composite would be 0.050 (the same as

either outcome alone) because all information provided by the second outcome is

redundant. In our example, where the correlation is 0.50 (some of the information is

redundant) the variance of the composite falls between these extremes. When we

were working with independent subgroups (earlier in this chapter) the correlation

was zero, and therefore the variance of the composite was 0.025.

These formulas are used to create Table 24.2, where the variance for each composite is

based on formula (24.2) and the weight is simply the reciprocal of the variance.

At this point we can proceed to the meta-analysis using these five (synthetic) scores.

To compute a summary effect and other statistics using the fixed-effect model, we apply

the formulas starting with (11.3). Using values from the line labeled Sum in Table 24.3,
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M ¼ 50:118

275:542
¼ 0:1819;

with variance

VM ¼
1

275:542
¼ 0:0036:

The average difference between the tutored and control groups on Basic skills is

0.1819 with variance 0.0036 and standard error 0.060. The 95% confidence interval

for the average effect is 0.064 to 0.300. The Z-value for a test of the null is 3.019

with a two-sided p-value of 0.003.

Working with more than two outcomes per study
These formulas can be extended to accommodate any number of outcomes. If

m represents the number of outcomes within a study, then the composite effect

size for that study would be computed as

Y ¼ 1

m

Xm
j

Yj

 !
; ð24:4Þ

and the variance of the composite is given by

VY ¼
1

m

� �
2

var
Xm
j¼1

Yi

 !
¼ 1

m

� �
2 Xm

j¼1

Vi þ
X
j6¼k

rjk

ffiffiffiffiffi
Vj

p ffiffiffiffiffi
Vk

p� � !
ð24:5Þ

as derived in Box 24.1. If the variances are all equal to V and the correlations are all

equal to r, then (24.5) simplifies to

VY ¼
1

m
Vð1þ ðm� 1ÞrÞ: ð24:6Þ

Table 24.3 Multiple outcomes – summary effect.

Study Outcome ES Variance ES Correlation Variance Weight ES*WT

Study 1
Reading 0.300 0.050

0.200 0.500 0.038 26.667 5.333Math 0.100 0.050

Study 2
Reading 0.200 0.020

0.150 0.600 0.016 62.500 9.375Math 0.100 0.020

Study 3
Reading 0.400 0.050

0.300 0.600 0.040 25.000 7.500Math 0.200 0.050

Study 4
Reading 0.200 0.010

0.150 0.400 0.007 142.857 21.429Math 0.100 0.010

Study 5
Reading 0.400 0.060

0.350 0.800 0.054 18.519 6.481
Math 0.300 0.060

Sum 275.542 50.118
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Impact of the correlations on the combined effect
One issue to consider is what happens as the correlation moves toward 1.0. Con-

tinuing with the simplified situation where all observations within a study have the

same variance (V) and all pairs of observations within the study have the same

correlation (r), if the m observations are independent of each other (r 5 0), the

variance of the composite is V/m. If the m observations are not independent of each

other, then the variance of the composite is V/m times a correction factor. We will

refer to this correction factor as the variance inflation factor (VIF), which is

VIF ¼ 1þ ðm� 1Þr; ð24:7Þ

where m is the number of observations and r is the correlation between each pair. An

increase in either m or r (or both) will result in a higher inflation of the variance

compared with treating the different outcomes as independent of each other.

In Table 24.4 we explore how the variance inflation factor depends on the value

of r, the correlation coefficient. For the purposes of this illustration we assume the

simplistic situation of a study having just two outcomes (m 5 2) with the same

variance (V 5 0.2) for each outcome. Each column in the table (A-E) corresponds to

a different correlation coefficient between these outcomes.

The variance of the composite for the study is

VY ¼
1

m
V � VIF: ð24:8Þ

Taking as an example column C, the correlation is r 5 0.50, and the variance

inflation factor is

VIF ¼ 1þ ð2� 1Þ � 0:50 ¼ 1:5000:

Table 24.4 Multiple outcomes – Impact of correlation on variance of summary effect.

A B C D E

Effect size (here assumed identical for all
outcomes)

0.4 0.4 0.4 0.4 0.4

Number of outcomes (m ) 2 2 2 2 2
Variance of each outcome (V ) 0.2 0.2 0.2 0.2 0.2

Correlation among outcomes ( r ) 0.000 0.250 0.500 0.750 1.000
Variance inflation factor (VIF ) 1.000 1.250 1.500 1.750 2.000

Variance of composite 0.100 0.125 0.150 0.175 0.200
Standard error of composite 0.316 0.354 0.387 0.418 0.447
Standard error inflation factor 1.000 1.118 1.225 1.323 1.414
Lower limit – 0.220 – 0.293 – 0.359 – 0.420 – 0.477
Upper limit 1.020 1.093 1.159 1.220 1.277
p-value (2-tailed) 0.206 0.258 0.302 0.339 0.371
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Thus, the variance of the composite score for the study is

VY ¼
1

2
� 0:2� 1:5000 ¼ 0:150:

As we move from left to right in the table (from a correlation of 0.00 to 1.00) the

variance inflation factor (VIF) and (by definition) the variance double. If the

inflation factor for the variance moves from 1.00 to 2.00, it follows that the inflation

factor for the standard error (which is the square root of the variance) will move

from 1.00 to 1.44. Therefore, the width of the confidence interval will increase by a

factor of 1.44 (and, correspondingly, the Z-value for the test of the null hypothesis

for this study would decrease by a factor of 1.44).

When the correlation is unknown
This table also provides a mechanism for working with synthetic variables when

we don’t know the correlation among outcomes. Earlier, we assumed that the

correlation between math and reading was known to be 0.50, and used that value

to compute the standard error of the combined effect and the related statistics.

In those cases where we don’t know the correlation for the study in question, we

should still be able to use other studies in the same field to identify a plausible

range for the correlation. We could then perform a sensitivity analysis and might

assume, for example, that if the correlation falls in the range of 0.50 to 0.75 then

the standard error probably falls in the range of 0.39 to 0.42 (columns C to D in the

table).

Researchers who do not know the correlation between outcomes sometimes fall

back on either of two ‘default’ positions. Some will include both math and verbal

scores in the analysis and treat them as independent. Others would use the average

of the reading variance and the math variance. It is instructive, therefore, to consider

the practical impact of these choices.

Treating the two outcomes as independent of each other yields the same precision

as setting the correlation at 0.00 (column A). By contrast, using the average of the

two variances yields the same precision as setting the correlation at 1.00

(column E). In effect, then, researchers who adopt either of these positions as a

way of bypassing the need to specify a correlation, are actually adopting a correla-

tion, albeit implicitly. And, the correlation that they adopt falls at either extreme of

the possible range (either zero or 1.0). The first approach is almost certain to

underestimate the variance and overestimate the precision. The second approach

is almost certain to overestimate the variance and underestimate the precision. In

this context, the idea of working with a plausible range of correlations rather than

the possible range offers some clear advantages.

As we noted at the outset, exactly the same approach applies to studies with multiple

outcomes and to studies with multiple time-points. However, there could be a distinc-

tion between the two when it comes to deciding what is a plausible range of correla-

tions. When we are working with different outcomes at a single point in time, the
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plausible range of correlations will depend on the similarity of the outcomes. When we

are working with the same outcome at multiple time-points, the plausible range of

correlations will depend on such factors as the time elapsed between assessments and

the stability of the relative scores over this time period.

One issue to consider is what happens if the correlations between multiple out-

comes are higher in some studies than in others. This variation will affect the relative

weights assigned to different studies, with more weight going to the study with a lower

correlation. In the running example the variances for reading and math were the same

in studies 1 and 3, but the correlation between reading and math was higher in study 3.

Therefore, study 3 had a higher variance and was assigned less weight in the meta-

analysis.

COMPARING OUTCOMES OR TIME-POINTS WITHIN A STUDY

We now turn to the problem of investigating differences between outcomes or

between time-points. To extend the current example, suppose that each study

reports the impact of the intervention for math and for reading and we want to

know if the impact is stronger for one of these outcomes than for the other. Or, each

study reports the effect at 6 months and 12 months, and we want to know if the effect

changes over time.

When our goal was to compute a combined effect based on both outcomes our

approach was to create a synthetic variable for each study (defined as the mean of

the effect sizes) and to use this as the effect size in the analysis. We will follow the

same approach here, except that the synthetic variable will be defined as the

difference in effect sizes rather than their mean.

The approach is shown in Table 24.5. As before, we start with summary data for

two outcomes (math and reading), and compute an effect size and variance for each.

Then, we compute a synthetic effect size, which is now the difference between the

two effects and its variance, as explained below.

This approach allows us to address the problem of correlated error, since the

formula for the variance of the synthetic variable will take into account the

correlation between the outcomes.

Computing a variance for correlated outcomes

Whenever we use sample data to estimate a difference, the variance reflects the error of

our estimate. If we compute the difference of two unrelated outcomes, each with

Table 24.5 Creating a synthetic variable as the difference between two outcomes.

Study Outcome Effect size Variance Difference Variance

Study 1
Math 0.30 0.05

0.20 ?
Reading 0.10 0.05
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variance V, then the variance of the difference is 2V, which incorporates the two

sources of error. By contrast, if we compute the difference of two (positively) related

outcomes, then some of the error is redundant, and so the total error is less than 2V. If

the correlation between outcomes is 0.50, the variance of the difference would be equal

to V, and as the correlation approaches 1.00, the variance of the difference would

approach zero. The operating principle is that the higher the correlation between the

outcomes, the lower the variance (the higher the precision) of the difference. The

formula for the variance of a difference from correlated outcomes (see Box 24.1) is

VYdiff
¼ VY1

þ VY2
� 2r

ffiffiffiffiffiffiffi
VY1

p ffiffiffiffiffiffiffi
VY2

p
: ð24:9Þ

In words, we sum the two variances and then subtract a value that reflects the

correlated error.

Note the difference from the formula for variance of a mean, where we added the

correlated error and included a scaling factor. When we combine positively corre-

lated outcomes, a higher correlation between outcomes results in a higher variance.

By contrast, when we compute the difference between positively correlated out-

comes, a higher correlation between outcomes results in a lower variance.

To understand why, suppose that we assess patients using two different measures

of depression. If a patient is having a particularly good day when the measures are

taken, both scores will tend to be higher than the patient’s average. If the patient is

having a bad day, both will tend to be lower than the patient’s average. If we

compute a combined effect, the error will build as we increase the number of

outcomes. If this is a good day, both measures will over-estimate the patient’s

level of functioning. By contrast, if we compute a difference, we subtract one effect

from the other, and the day-to-day variation is removed.

Computing a difference between outcomes
With this as background, we can return to the running example, and discuss the

computation of the synthetic effect size and its variance.

The difference between reading and math is computed as

Ydiff ¼ Y1 � Y2; ð24:10Þ

with variance

VYdiff
¼ VY1

þ VY2
� 2r

ffiffiffiffiffiffiffi
VY1

p ffiffiffiffiffiffiffi
VY2

p
: ð24:11Þ

If both variances are equal to the same variance, V, then (24.11) simplifies to

V ¼ 2Vð1� rÞ: ð24:12Þ

In the running example, the difference between reading and math in study 1 is

computed as

Vdiff ¼ 0:30� 0:10 ¼ 0:2000;
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with variance

VYdiff
¼ 0:05þ 0:05� 2� 0:50�

ffiffiffiffiffiffiffiffiffi
0:05
p ffiffiffiffiffiffiffiffiffi

0:05
p

¼ 0:05;

or equivalently,

VYdiff
¼ 2ð0:05Þð1� 0:50Þ ¼ 0:05:

These formulas are used to create Table 24.6, where the variance for each

composite is based on formula (24.11) and the weight is simply the reciprocal

of the variance.

At this point we can proceed to the meta-analysis using these five (syn-

thetic) scores. The scores happen to represent difference scores, but the same

formulas apply. Under the fixed-effect model the formulas starting with (11.3)

yield a summary effect

M ¼ 27:750

232:500
¼ 0:1194;

with variance

VM ¼
1

232:500
¼ 0:0043:

The average difference between the effect size for reading and the effect size for

math is 0.1194 with variance 0.0043 and standard error 0.066. The 95% confidence

interval for the average difference is �0.009 to 0.248. The Z-value for a test of the

null is 1.820 with a two-sided p-value of 0.069.

Working with more than two outcomes per study
The formulas presented for a difference based on two outcomes can be extended to

accommodate any number of outcomes using contrasts. For example, we could look

Table 24.6 Multiple outcomes – difference between outcomes.

ES Variance ES Correlation Variance Weight ES*WT

Study 1
Reading 0.300 0.050

0.200 0.500 0.050 20.000 4.000Math 0.100 0.050

Study 2
Reading 0.200 0.020

0.100 0.600 0.016 62.500 6.250Math 0.100 0.020

Study 3
Reading 0.400 0.050

0.200 0.600 0.040 25.000 5.000Math 0.200 0.050

Study 4
Reading 0.200 0.010

0.100 0.400 0.012 83.333 8.333Math 0.100 0.010

Study 5
Reading 0.400 0.060

0.100 0.800 0.024 41.667 4.167Math 0.300 0.060

Sum 232.500 27.750
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at the difference between (a) math scores and (b) the mean of reading and verbal

scores. However, this is beyond the scope of this volume.

Impact of the correlations on the combined effect

One issue to consider is what happens if the correlation between two outcomes is

higher in some studies than in others. This variation will affect the relative weights

assigned to different studies, with more weight going to the study with a higher

correlation. In the running example the variances for reading and math were the

same in studies 1 and 3, but the correlation between reading and math was higher in

study 3. Therefore, study 3 had a lower variance and was assigned more weight in

the meta-analysis. This is the opposite of what happens for a composite.

A second issue to consider is what happens as the set of correlations as a whole

moves toward 1.0. Continuing with the simplified situation where both observations

within a study have the same variance (V), if the two observations are independent

of each other, the variance of the composite is 2V. If the observations are not

independent of each other, then the variance of the composite is 2V times a

correction factor. We will refer to this correction factor as the variance inflation

factor (VIF),

VIF ¼ 1� r; ð24:13Þ

where r is the correlation between the two components. An increase in r will result

in a deflation of the variance compared with treating the different outcomes as

independent of each other.

In Table 24.7 we explore how the variance inflation factor depends on the value

of r, the correlation coefficient. For the purposes of this illustration we assume the

simplistic situation of a study having the same variance (VY 5 0.2) for each

outcome. Each column in the table (A-E) corresponds to a different correlation

coefficient between these outcomes.

The variance of the difference between the outcomes is

VYdiff
¼ 2� VY � VIF: ð24:14Þ

Taking as an example column C, the correlation is r 5 0.50 and the variance

inflation factor is

VIF ¼ 1� 0:50 ¼ 0:5000:

Thus the variance of the composite score for one study is

VYdiff
¼ 2� 0:20� 0:50 ¼ 0:20:

As we move from left to right in the table (from a correlation of 0.00 to 0.75) the

variance inflation factor (VIF) moves from 1.00 to 0.25. If the inflation factor for the

variance moves from 1.00 to 0.25, it follows that the inflation factor for the standard

error (which is the square root of the variance) will move from 1.00 to 0.50.
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Therefore, the confidence interval will narrow by 50 %, and the Z-value for the test

of the null will double.

Note. In this example we focused on correlations in the range of 0.0 to 0.75,

columns A-D in the table. As the correlation approaches 1.0 (column E) the

variance will approach zero. This means that the width of the confidence interval

will approach zero, the Z-value will approach infinity, and the p-value will approach

zero. These apparent anomalies reflect what would happen if all error were removed

from the equation. In Table 24.7, the correlation displayed as 1.000 is actually

entered as 0.9999.

When the correlation is unknown
Table 24.7 also provides a mechanism for working with synthetic variables when

we don’t know the correlation among outcomes. Earlier, we assumed that the

correlation between math and reading was known to be 0.50, and used that value

to compute the standard error of the difference and related statistics. In those cases

where we don’t know the correlation for the study in question, we should still be

able to use other studies in the same field to identify a plausible range for the

correlation. We could then perform a sensitivity analysis and say, for example, that

if the correlation falls in the range of 0.50 to 0.75 then the two-tailed p-value

probably falls in the range of 0.046 to 0.005 (columns C to D in the table).

Researchers who do not know the correlation between outcomes sometimes treat

the outcomes as coming from independent subgroups. It is instructive, therefore, to

consider the practical impact of this choice. Treating the two outcomes as indepen-

dent of each other yields the same precision as setting the correlation at 0.00

(column A). In effect, then, researchers who take this approach as a way of

bypassing the need to specify a correlation, are actually adopting a correlation,

albeit implicitly. And, the correlation that they adopt is zero. As such, it is almost

certain to overestimate the variance and underestimate the precision of the

Table 24.7 Multiple outcomes – Impact of correlation on the variance of difference.

A B C D E

Difference (Y ) 0.4 0.4 0.4 0.4 0.4
Variance of each outcome (V ) 0.2 0.2 0.2 0.2 0.2

Correlation between outcomes 0.000 0.250 0.500 0.750 1.000
Variance inflation factor 1.000 0.750 0.500 0.250 0.000

Variance of difference (VYdiff ) 0.400 0.300 0.200 0.100 0.000
Standard error of difference 0.283 0.245 0.200 0.141 0.003
Standard error inflation factor 1.000 0.866 0.707 0.500 0.010
Lower limit �0.155 �0.0802 0.008 0.124 0.394
Upper limit 0.955 0.8802 0.792 0.676 0.406
p-value (2-tailed) 0.158 0.103 0.046 0.005 0.000
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difference. In this context, (as in the case of a combined effect) the idea of working

with a plausible range of correlations offers some clear advantages.

SUMMARY POINTS

� When we have effect sizes for more than one outcome (or time-point) within a

study, based on the same participants, the information for the different effects

is not independent and we need to take account of this in the analysis.

� To compute a summary effect using multiple outcomes we create a synthetic

effect size for each study, defined as the mean effect size in that study, with a

variance that takes account of the correlation among the different outcomes.

We then use this effect size and variance to compute a summary effect across

studies. Higher correlations yield less precise estimates of the summary

effect.

� To compute the difference in effects we create a synthetic effect size for each

study, defined as the difference between effect sizes in that study, with a

variance that takes account of the correlation among the different outcomes.

We then use this effect size and variance to assess the difference in effect

sizes. Higher correlations yield more precise estimates of the difference in

effects.

Further Reading

Cooper, H. (1982) Scientific Guidelines for conducting integrative research reviews. Review of

Educational Research, 52(2), 291–302.

Glaser, L. & Olkin, I. (1994) Stochastically dependent effect sizes. In Cooper, H. &

Hedges, L. V., The Handbook of Research Synthesis. New York: Russell Sage Foundation.
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CHAPTER 25

Multiple Comparisons within a Study

Introduction
Combining across multiple comparisons within a study
Differences between treatments

INTRODUCTION

The final case of a complex data structure is the case where studies use a single

control group and several treatment groups. For example, suppose we are working

with five studies that assessed the impact of tutoring on student performance. Each

study included three groups – a control group (a free study period), intervention

A (tutoring focused on that day’s school lesson) and intervention B (tutoring based

on a separate agenda).

If our goal was to compute a summary effect for A versus control and separately

for B versus control, we would simply perform two separate meta-analyses, one

using the A versus control comparison from each study, and one using the B versus

control comparison from each study.

The issues we address in this chapter are how to proceed when we want to

incorporate both treatment groups in the same analysis. Specifically,

� We want to compute a summary effect for the active intervention (combining A

and B) versus control
� Or, we want to investigate the difference in effect size for intervention A versus

intervention B

COMBINING ACROSS MULTIPLE COMPARISONS WITHIN A STUDY

The issue we need to address is that the effect for A versus control and the effect for

B versus control are not independent of each other. If each group (A, B and control)

has 200 participants and we treated the two effects as independent, our effective

sample size would appear to be 800 (since we count the control group twice) when

in fact the true sample size is 600.

Introduction to Meta-Analysis.  Michael Borenstein, L. V. Hedges, J. P. T. Higgins and H. R. Rothstein  
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The problem, and the solution, are very similar to the ones we discussed for

multiple outcomes (or time-points) within a study. If our goal is to compare any

treatment versus control, we can create a composite variable which is simply the

mean of A versus control and B versus control. The variance of this composite

would be computed based on the variance of each effect size as well as the

correlation between the two effects. At that point, all the formulas for combining

data from multiple outcomes would apply here as well.

The difference between multiple outcomes and multiple comparison groups is the

following. In the case of multiple outcomes, the correlation between outcomes could

fall anywhere in the range of zero (or even a negative correlation) to 1.0. We suggested

that the researcher work with a range of plausible correlations, but even this approach

would typically yield a nontrivial range of possible correlations (say, 0.25 to 0.75) and

variances.Bycontrast, in thecaseofmultiplecomparisongroups, thecorrelationcanbe

estimated accurately based on the number of cases in each group. For example, if

group A, group B and the control group each have 200 participants, the correlation

between A versus control and B versus control is 0.50. (This follows from the fact that

the correlation between group A and group B is 0, while the correlation between control

and control is 1, yielding a combined correlation midway between the two, or 0.50.)

Therefore, we can work with a correlation of 0.50 without the need to conduct a

sensitivity analysis based on a range of possible correlations.

This approach can be extended for the case where the sample size differs from one

group to the next. For example, we can use a weighted mean of the effects rather than a

simple mean, to give more weight to the treatments with more subjects. In this case, we

would also need to adjust the variance to take account of the weighting. If the sample

size differs from group to group the correlation will no longer be 0.50, but can be

estimated precisely based on the data, without the need to resort to external correlations.

An alternate approach for working with multiple comparison groups is to collapse

data from the treatment groups and use this data to compute an effect size and

variance. If we are working with binary data from one control group and two

treatment groups in a 2� 3 table we would collapse the two treatment groups to

create a 2� 2 table, and then compute the effect size from that. Or, if we are

working with means and standard deviations for three groups (A, B and control)

we would collapse the data from A and B to yield a combined mean and standard

deviation, and then compute the effect size for the control group versus this merged

group (see option 2 for independent subgroups, (23.1), (23.2), and (23.3)). This

approach will yield essentially the same results as the method proposed above.

DIFFERENCES BETWEEN TREATMENTS

We now turn to the problem of investigating differences between treatments when

the different treatments use the same comparison group. To extend the current

example, suppose that we have two treatment groups (A and B) and a control group.

We want to know if one of the treatments is superior to the other.
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While the approach used for computing a combined effect with multiple compar-

isons was similar to that for multiple outcomes, this is not the case when we turn to

differences among the treatments. In the case of multiple outcomes, we had an effect

size for reading (defined as the difference between treated and control) and an effect

size for math (the difference between treated and control). Our approach was to

work with the difference between the two effect sizes. In the case of multiple

comparisons the analogous approach would be to compute the effect size for A

versus control, and the effect size for B versus control, and then work with the

difference between the two effect sizes.

While this approach would work, a better (potentially more powerful) approach is

to ignore the control group entirely, and simply define the effect size as the

difference between A and B. If we are working with binary data we would create

a 2 x 2 table for A versus B and use this to compute an effect size. If we are working

with means and standard deviations we would compute an effect size from the

summary data in these two groups, ignoring the control group entirely.

This approach will only work if all studies have the same groups (here, A and B),

which allows us to create the same effect size (A versus B) for each study. In

practice, we are likely to encounter problems since some studies might compare

A versus B, while others compare A versus control and still others compare B versus

control. Or, some studies might include more than two comparison groups. Methods

developed to address these kinds of issues are beyond the scope of this book, but are

covered in the further readings.

SUMMARY POINTS

� When a study uses one control group and more than one treatment group, the

data from the control group is used to compute more than one effect size.

Therefore, the information for these effect sizes is not independent and we

need to take this into account when computing the variance.

� To compute a combined effect, ignoring differences among the treatments, we

can create a synthetic effect size for each study, defined as the mean effect

size in that study (say, the mean of treatment A versus control and of treatment

B versus control), with a variance that takes account of the correlation among

the different treatments. We can then use this synthetic effect size and

variance to compute a summary effect across studies. This is the same

approach used with multiple outcomes.

� To look at differences among treatments the preferred option is to perform a

direct comparison of treatment A versus treatment B, removing the control

group from the analysis entirely. In some cases this will not be possible for

practical reasons. In this case we can revert to the synthetic effect size, or can

apply advanced methods.
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CHAPTER 26

Notes on Complex Data Structures

Introduction
Summary effect
Differences in effect

INTRODUCTION

In this Part we discussed three cases where studies provide more than one unit of

data for the analysis. These are the case of multiple independent subgroups within a

study, multiple outcomes or time-points based on the same subjects, and two or

more treatment groups that use the same comparison group.

SUMMARY EFFECT

One issue we addressed was how to compute a summary effect using all of the

data. For independent subgroups this meant looking at the impact of treatment

versus no treatment, and ignoring any differences between stage-1 patients and

stage-2 patients. For multiple outcomes this meant looking at the impact of the

intervention on basic skills, and ignoring any differences between the impact on

math versus reading. For multiple treatment groups it meant looking at the impact

of treatment and control, and ignoring any differences among variants of the

treatment.

In all cases, the key issue was the need to address any possible redundancy of

information, since the precision of the combined effect is strongly dependent on

the amount of information. To highlight the difference among the three cases,

we used the same numbers in the worked examples as we moved from one

chapter to the next. For example, for study 1, we assumed a variance of 0.05

between the two units of information, whether for two independent groups or for

two outcomes.
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The formula for the variance of a composite is the same in all cases, namely (in its

simple form)

VY ¼
1

2
VYð1þ rÞ: ð26:1Þ

Consider, then, how this formula plays out for independent subgroups, for multiple

outcomes, and for multiple comparisons.

� For multiple independent subgroups r is always zero, and so the variance of the

composite is 0.025.

� For multiple outcomes r can take on any value. We assume that it falls

somewhere in the range of 0.00 to 1.00, and assume further that the

researcher can provide a range of plausible values for r. For example, we

might have evidence that r is probably close to 0.50, with a plausible range

of 0.25 to 0.75. In that case the variance would probably be close to 0.038,

with a plausible range of 0.031 to 0.044.

� For multiple comparisons r can be determined based on the number of treatment

groups and the number of subjects in each groups. If there is one control group

and two treatment groups, and the subjects are divided evenly across groups, then

r would be 0.50 and the variance would be 0.038. In other cases r could move

either up or down, but can always be computed, and therefore we don’t need to

work with a range of values.

DIFFERENCES IN EFFECT

The second issue we addressed was how to look at the difference between effects.

For independent subgroups this meant looking at whether the treatment was more

effective for one of the subgroups (stage-1 or stage-2 patients) than the other. For

multiple outcomes this meant looking at whether the intervention had more of an impact

on one outcome (reading or m ath) than the other. For multiple treatment groups it

meant looking at whether one of the treatments was more effective than the other.

Again, the key issue was the need to address any possible redundancy of

information, since the precision of the difference is strongly dependent on the

amount of information. To highlight the difference among the three cases we used

the same numbers in the worked examples as we moved from one chapter to the

next. For example, we assumed a variance of 0.05 for each subgroup, or for each

outcome, or for each comparison.

The formula for the variance of a difference is the same in all cases, namely (in its

simple form)

VYdiff
¼2VYð1� rÞ: ð26:2Þ

This formula incorporates the term (1�r), which means that a higher correlation

will yield a more precise estimate of the difference. This is the reverse of the case for
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a composite effect, where the formula incorporates the term (1þ r), and a higher

correlation will yield a less precise estimate.

� For multiple independent subgroups r is always zero, and so the variance of the

difference is 0.100.

� For multiple outcomes r can take on any value. We assume that it falls some-

where in the range of 0.00 to 1.00, and assume further that the researcher can

provide a range of plausible values for r. For example, we might have evidence

that r is probably close to 0.50, with a plausible range of 0.25 to 0.75. In that case

the variance would probably be close to 0.050, with a plausible range of 0.075 to

0.025.

� For multiple comparisons we have essentially the same situation as for multiple

outcomes, except that we can actually compute the correlation needed for the

formula. However, there are other approaches available that allow for head-to-

head comparisons of the treatment groups.
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